Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The potential energy within a spring is determined by the equation =. When the spring is stretched or compressed, kinetic energy of the mass gets converted into potential energy of the spring. By conservation of energy, assuming the datum is defined at the equilibrium position, when the spring reaches its maximal potential energy, the kinetic ...
Classical mechanics utilises many equations—as well as other mathematical concepts—which relate various physical quantities to one another. These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these.
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
A mass suspended from a spring, for example, might, if pulled and released, bounce up and down. On each bounce, the system tends to return to its equilibrium position, but overshoots it. Sometimes losses (e.g. frictional) damp the system and can cause the oscillations to gradually decay in amplitude towards zero or attenuate. The damping ratio ...
Both systems can be simplified by rewriting the equations in terms of the amplitude (r or |A|) and the phase (arctan(v/u) or arg A). Once the equations have been rewritten in this way, it is easy to see that solutions with constant amplitude are periodic travelling waves, with the phase being a linear function of space and time.
For a single degree of freedom oscillator, a system in which the motion can be described by a single coordinate, the natural frequency depends on two system properties: mass and stiffness; (providing the system is undamped). The natural frequency, or fundamental frequency, ω 0, can be found using the following equation: