Search results
Results from the WOW.Com Content Network
The heat transfer coefficient is often calculated from the Nusselt number (a dimensionless number). There are also online calculators available specifically for Heat-transfer fluid applications. Experimental assessment of the heat transfer coefficient poses some challenges especially when small fluxes are to be measured (e.g. < 0.2 W/cm 2). [1] [2]
In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.
This coefficient accounts for the time lag between the outdoor and indoor temperature peaks. Depending on the properties of the building envelope, a delay is present when observing the amount of heat being transferred inside from the outdoors. The CLF is the cooling load at a given time compared to the heat gain from earlier in the day. [1] [5]
The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...
Let K 0 is the normal conductivity at one bar (10 5 N/m 2) pressure, K e is its conductivity at special pressure and/or length scale. Let d is a plate distance in meters, P is an air pressure in Pascals (N/m 2), T is temperature Kelvin, C is this Lasance constant 7.6 ⋅ 10 −5 m ⋅ K/N and PP is the product P ⋅ d/T.
There is also a measure known as the heat transfer coefficient: the quantity of heat that passes per unit time through a unit area of a plate of particular thickness when its opposite faces differ in temperature by one kelvin. [8] In ASTM C168-15, this area-independent quantity is referred to as the "thermal conductance". [9]
The heat transfer rate can be written using Newton's law of cooling as = (), where h is the heat transfer coefficient and A is the heat transfer surface area. Because heat transfer at the surface is by conduction, the same quantity can be expressed in terms of the thermal conductivity k:
The Stanton number, St, is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). [1] [2]: 476 It is used to characterize heat transfer in forced convection flows.