enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nearest-neighbor interpolation - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_interpolation

    For a given set of points in space, a Voronoi diagram is a decomposition of space into cells, one for each given point, so that anywhere in space, the closest given point is inside the cell. This is equivalent to nearest neighbor interpolation, by assigning the function value at the given point to all the points inside the cell. [3]

  3. Extrapolation - Wikipedia

    en.wikipedia.org/wiki/Extrapolation

    Even for proper assumptions about the function, the extrapolation can diverge severely from the function. The classic example is truncated power series representations of sin(x) and related trigonometric functions. For instance, taking only data from near the x = 0, we may estimate that the function behaves as sin(x) ~ x.

  4. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    In numerical analysis, multivariate interpolation is interpolation on functions of more than one variable [1] (multivariate functions); when the variates are spatial coordinates, it is also known as spatial interpolation. The function to be interpolated is known at given points (,,, …

  5. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Here, the interpolant is not a polynomial but a spline: a chain of several polynomials of a lower degree. Interpolation of periodic functions by harmonic functions is accomplished by Fourier transform. This can be seen as a form of polynomial interpolation with harmonic base functions, see trigonometric interpolation and trigonometric polynomial.

  6. Bilinear interpolation - Wikipedia

    en.wikipedia.org/wiki/Bilinear_interpolation

    In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation. It is usually applied to functions sampled on a 2D rectilinear grid, though it can be generalized to functions defined on the vertices of (a mesh of) arbitrary convex quadrilaterals.

  7. Richardson extrapolation - Wikipedia

    en.wikipedia.org/wiki/Richardson_extrapolation

    A (1, 1) = Trapezoidal (f, tStart, tEnd, h, y0) % Each row of the matrix requires one call to Trapezoidal % This loops starts by filling the second row of the matrix, % since the first row was computed above for i = 1: maxRows-1 % Starting at i = 1, iterate at most maxRows - 1 times % Halve the previous value of h since this is the start of a ...

  8. NYT ‘Connections’ Hints and Answers Today, Sunday, December 15

    www.aol.com/nyt-connections-hints-answers-today...

    Spoilers ahead! We've warned you. We mean it. Read no further until you really want some clues or you've completely given up and want the answers ASAP. Get ready for all of today's NYT ...

  9. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    It is natural to ask what the result would be if the step size were allowed to approach zero. This can be answered by extrapolating the result from two or more nonzero step sizes, using series acceleration methods such as Richardson extrapolation. The extrapolation function may be a polynomial or rational function.