enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    James Clerk Maxwell's 1865 prediction [46] that light was an electromagnetic wave – which was confirmed experimentally in 1888 by Heinrich Hertz's detection of radio waves [47] – seemed to be the final blow to particle models of light. In 1900, Maxwell's theoretical model of light as oscillating electric and magnetic fields seemed complete.

  3. Corpuscular theory of light - Wikipedia

    en.wikipedia.org/wiki/Corpuscular_theory_of_light

    The fact that light could be polarized was for the first time qualitatively explained by Newton using the particle theory. Étienne-Louis Malus in 1810 created a mathematical particle theory of polarization. Jean-Baptiste Biot in 1812 showed that this theory explained all known phenomena of light polarization. At that time polarization was ...

  4. Light scattering by particles - Wikipedia

    en.wikipedia.org/wiki/Light_scattering_by_particles

    Maxwell's equations are the basis of theoretical and computational methods describing light scattering, but since exact solutions to Maxwell's equations are only known for selected particle geometries (such as spherical), light scattering by particles is a branch of computational electromagnetics dealing with electromagnetic radiation ...

  5. Light - Wikipedia

    en.wikipedia.org/wiki/Light

    Light exerts physical pressure on objects in its path, a phenomenon which can be deduced by Maxwell's equations, but can be more easily explained by the particle nature of light: photons strike and transfer their momentum. Light pressure is equal to the power of the light beam divided by c, the speed of light.

  6. Quantum optics - Wikipedia

    en.wikipedia.org/wiki/Quantum_optics

    Quantum optics is a branch of atomic, molecular, and optical physics and quantum chemistry dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons.

  7. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    Some phenomena depend on light having both wave-like and particle-like properties. Explanation of these effects requires quantum mechanics. When considering light's particle-like properties, the light is modelled as a collection of particles called "photons". Quantum optics deals with the application of quantum mechanics to optical systems.

  8. Wave–particle duality - Wikipedia

    en.wikipedia.org/wiki/Wave–particle_duality

    In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.

  9. Photoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Photoelectric_effect

    The phenomenon is studied in condensed matter physics, solid state, and quantum chemistry to draw inferences about the properties of atoms, molecules and solids. The effect has found use in electronic devices specialized for light detection and precisely timed electron emission.