Search results
Results from the WOW.Com Content Network
A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types. When all of the rectangular cuboid's edges are equal in length, it results in a cube, with six square faces and adjacent faces meeting at right angles.
A rectangular cuboid is a convex polyhedron with six rectangle faces. These are often called "cuboids", without qualifying them as being rectangular, but a cuboid can also refer to a more general class of polyhedra, with six quadrilateral faces. [1] The dihedral angles of a rectangular cuboid are all right angles, and its opposite faces are ...
A cube is a special case of rectangular cuboid in which the edges are equal in length. [1] Like other cuboids, every face of a cube has four vertices, each of which connects with three congruent lines. These edges form square faces, making the dihedral angle of a cube between every two adjacent squares being the interior angle of a square, 90 ...
Rectangular cuboid: it has six rectangular faces (also called a rectangular parallelepiped, or sometimes simply a cuboid). Right rhombic prism: it has two rhombic faces and four congruent rectangular faces. Note: the fully rhombic special case, with two rhombic faces and four congruent square faces (= =), has the same name, and the same ...
A cuboid has twelve face diagonals (two on each of the six faces), and it has four space diagonals. [2] The cuboid's face diagonals can have up to three different lengths, since the faces come in congruent pairs and the two diagonals on any face are equal. The cuboid's space diagonals all have the same length.
For example, any of the six squares that bound a cube is a face of the cube. Sometimes "face" is also used to refer to the 2-dimensional features of a 4-polytope. With this meaning, the 4-dimensional tesseract has 24 square faces, each sharing two of 8 cubic cells.
Their faces are quadrilaterals. Cuboid means "like a cube", in the sense that by adjusting the length of the edges or the angles between edges and faces, a cuboid can be transformed into a cube. In math language a cuboid is convex polyhedron, whose polyhedral graph is the same as that of a cube.
For instance, a cube has eight vertices, twelve edges, and six facets, so its ƒ-vector is (8,12,6). The dual polytope has a ƒ-vector with the same numbers in the reverse order; thus, for instance, the regular octahedron, the dual to a cube, has the ƒ-vector (6,12,8).