Search results
Results from the WOW.Com Content Network
Iron(II) carbonate, or ferrous carbonate, is a chemical compound with formula FeCO 3 , that occurs naturally as the mineral siderite . At ordinary ambient temperatures, it is a green-brown ionic solid consisting of iron(II) cations Fe 2+
Nitric acid reacts with most metals, but the details depend on the concentration of the acid and the nature of the metal. Dilute nitric acid behaves as a typical acid in its reaction with most metals. Magnesium, manganese, and zinc liberate H 2: Mg + 2 HNO 3 → Mg(NO 3) 2 + H 2 Mn + 2 HNO 3 → Mn(NO 3) 2 + H 2 Zn + 2 HNO 3 → Zn(NO 3) 2 + H 2
Barium nitrate is manufactured by two processes that start with the main source material for barium, the carbonate. The first involves dissolving barium carbonate in nitric acid, allowing any iron impurities to precipitate, then filtered, evaporated, and crystallized. The second requires combining barium sulfide with nitric acid. [4]
Iron is by far the most reactive element in its group; it is pyrophoric when finely divided and dissolves easily in dilute acids, giving Fe 2+. However, it does not react with concentrated nitric acid and other oxidizing acids due to the formation of an impervious oxide layer, which can nevertheless react with hydrochloric acid. [10]
In the 1830s, Michael Faraday and Christian Friedrich Schönbein studied that issue systematically and demonstrated that when a piece of iron is placed in dilute nitric acid, it will dissolve and produce hydrogen, but if the iron is placed in concentrated nitric acid and then returned to the dilute nitric acid, little or no reaction will take ...
A thermite reaction using iron(III) oxide. The sparks flying outwards are globules of molten iron trailing smoke in their wake. A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. [1]
Anhydrous nitric acid may be made by distilling concentrated nitric acid with phosphorus pentoxide at low pressure in glass apparatus in the dark. It can only be made in the solid state, because upon melting it spontaneously decomposes to nitrogen dioxide, and liquid nitric acid undergoes self-ionisation to a larger extent than any other ...
Being the conjugate base of a strong acid (nitric acid, pK a = -1.4), nitrate has modest Lewis basicity.Two coordination modes are common: unidentate and bidentate.Often, bidentate nitrate, denoted κ 2-NO 3, is bound unsymmetrically in the sense that one M-O distance is clearly bonding and the other is more weakly interacting. [2]