Search results
Results from the WOW.Com Content Network
The search procedure consists of choosing a range of parameter values for s, b, and m, evaluating the sums out to many digits, and then using an integer relation-finding algorithm (typically Helaman Ferguson's PSLQ algorithm) to find a sequence A that adds up those intermediate sums to a well-known constant or perhaps to zero.
Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total. This list may not reflect recent changes. A.
The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...
Once the message has been sent, becomes the process , while () becomes the process [/], which is with the place-holder substituted by , the data received on . The class of processes that P {\displaystyle {\mathit {P}}} is allowed to range over as the continuation of the output operation substantially influences the properties of the calculus.
A spigot algorithm is an algorithm for computing the value of a transcendental number (such as π or e) that generates the digits of the number sequentially from left to right providing increasing precision as the algorithm proceeds. Spigot algorithms also aim to minimize the amount of intermediate storage required.
In computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. [1] It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels.
At any time, updates to the table could be: the insertion of a new process at level 0, a change to the last to enter at a given level, or a process moving up one level (if it is not the last to enter OR there are no other processes at its own level or higher). The filter algorithm generalizes Peterson's algorithm to N > 2 processes. [6]
The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae. Published by the Chudnovsky brothers in 1988, [ 1 ] it was used to calculate π to a billion decimal places.