Search results
Results from the WOW.Com Content Network
The program provides methods that are appropriate for matched and independent t-tests, [2] survival analysis, [5] matched [6] and unmatched [7] [8] studies of dichotomous events, the Mantel-Haenszel test, [9] and linear regression. [3] The program can generate graphs of the relationships between power, sample size and the detectable alternative ...
G*Power is a free-to use software used to calculate statistical power. ... Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses ...
By itself, a regression is simply a calculation using the data. In order to interpret the output of regression as a meaningful statistical quantity that measures real-world relationships, researchers often rely on a number of classical assumptions .
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
The distributions of a wide variety of physical, biological, and human-made phenomena approximately follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and of solar flares, [2] cloud sizes, [3] the foraging pattern of various species, [4] the sizes of activity patterns of neuronal populations, [5] the frequencies of words in most languages ...
The main application of statistical power is "power analysis", a calculation of power usually done before an experiment is conducted using data from pilot studies or a literature review. Power analyses can be used to calculate the minimum sample size required so that one can be reasonably likely to detect an effect of a given size (in other ...
Although polynomial regression fits a curve model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression.
For comparing significance tests, a meaningful measure of efficiency can be defined based on the sample size required for the test to achieve a given task power. [14] Pitman efficiency [15] and Bahadur efficiency (or Hodges–Lehmann efficiency) [16] [17] [18] relate to the comparison of the performance of statistical hypothesis testing procedures.