Search results
Results from the WOW.Com Content Network
Lines in a Cartesian plane or, more generally, in affine coordinates, are characterized by linear equations. More precisely, every line (including vertical lines) is the set of all points whose coordinates (x, y) satisfy a linear equation; that is, = {(,) + =}, where a, b and c are fixed real numbers (called coefficients) such that a and b are ...
A general straight-line thread connects the two points (0, k−t) and (t, 0), where k is an arbitrary scaling constant, and the family of lines is generated by varying the parameter t. From simple geometry, the equation of this straight line is y = −(k − t)x/t + k − t. Rearranging and casting in the form F(x,y,t) = 0 gives:
In general, a quadratic equation can be expressed in the form + + =, [42] where a is not zero (if it were zero, then the equation would not be quadratic but linear). Because of this a quadratic equation must contain the term a x 2 {\displaystyle ax^{2}} , which is known as the quadratic term.
In three-dimensional Euclidean space, these three planes represent solutions to linear equations, and their intersection represents the set of common solutions: in this case, a unique point. The blue line is the common solution to two of these equations. Linear algebra is the branch of mathematics concerning linear equations such as:
The equation of the tangent line in Cartesian coordinates can be found by setting z=1 in this equation. [14] To apply this to algebraic curves, write f(x, y) as = + + + + where each u r is the sum of all terms of degree r. The homogeneous equation of the curve is then
These equations taken together are as powerful and complete as Maxwell's equations. Moreover, the problem has been reduced somewhat, as the electric and magnetic fields together had six components to solve for. [1] In the potential formulation, there are only four components: the electric potential and the three components of the vector potential.
Conversely, every line is the set of all solutions of a linear equation. The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0, the line is the graph of the function of x that has been defined in the preceding ...
A canonical form thus provides a classification theorem and more, in that it not only classifies every class, but also gives a distinguished (canonical) representative for each object in the class. Formally, a canonicalization with respect to an equivalence relation R on a set S is a mapping c : S → S such that for all s , s 1 , s 2 ∈ S :