enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    Support for multi-dimensional arrays may also be provided by external libraries, which may even support arbitrary orderings, where each dimension has a stride value, and row-major or column-major are just two possible resulting interpretations. Row-major order is the default in NumPy [19] (for Python).

  3. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix has dimension n-by-p, where n is the number of samples observed, and p is the number of variables measured in all samples. [4] [5]In this representation different rows typically represent different repetitions of an experiment, while columns represent different types of data (say, the results from particular probes).

  4. Array slicing - Wikipedia

    en.wikipedia.org/wiki/Array_slicing

    For "one-dimensional" (single-indexed) arrays – vectors, sequence, strings etc. – the most common slicing operation is extraction of zero or more consecutive elements. Thus, if we have a vector containing elements (2, 5, 7, 3, 8, 6, 4, 1), and we want to create an array slice from the 3rd to the 6th items, we get (7, 3, 8, 6).

  5. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator. If a is a row vector of size [1 n] and b is a corresponding column vector of size [n 1]. a * b; By contrast, the entrywise product is implemented as: a .* b;

  6. Data parallelism - Wikipedia

    en.wikipedia.org/wiki/Data_parallelism

    Exploitation of the concept of data parallelism started in 1960s with the development of the Solomon machine. [1] The Solomon machine, also called a vector processor, was developed to expedite the performance of mathematical operations by working on a large data array (operating on multiple data in consecutive time steps).

  7. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  8. List of data structures - Wikipedia

    en.wikipedia.org/wiki/List_of_data_structures

    Array, a sequence of elements of the same type stored contiguously in memory; Record (also called a structure or struct), a collection of fields Product type (also called a tuple), a record in which the fields are not named; String, a sequence of characters representing text; Union, a datum which may be one of a set of types

  9. Longest common subsequence - Wikipedia

    en.wikipedia.org/wiki/Longest_common_subsequence

    This table is used to store the LCS sequence for each step of the calculation. The second column and second row have been filled in with ε, because when an empty sequence is compared with a non-empty sequence, the longest common subsequence is always an empty sequence. LCS(R 1, C 1) is determined by comparing the first elements in each sequence.