enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discrete-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Markov_chain

    A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.

  3. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X(0), X(δ), X(2δ), ... give the sequence of states visited by the δ-skeleton.

  4. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.

  5. Markov chains on a measurable state space - Wikipedia

    en.wikipedia.org/wiki/Markov_chains_on_a...

    In 1953 the term Markov chain was used for stochastic processes with discrete or continuous index set, living on a countable or finite state space, see Doob. [1] or Chung. [2] Since the late 20th century it became more popular to consider a Markov chain as a stochastic process with discrete index set, living on a measurable state space. [3] [4] [5]

  6. Stochastic process - Wikipedia

    en.wikipedia.org/wiki/Stochastic_process

    The Brownian motion process and the Poisson process (in one dimension) are both examples of Markov processes [193] in continuous time, while random walks on the integers and the gambler's ruin problem are examples of Markov processes in discrete time. [194] [195] A Markov chain is a type of Markov process that has either discrete state space or ...

  7. Uniformization (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Uniformization...

    In probability theory, uniformization method, (also known as Jensen's method [1] or the randomization method [2]) is a method to compute transient solutions of finite state continuous-time Markov chains, by approximating the process by a discrete-time Markov chain. [2]

  8. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    However, for continuous-time Markov decision processes, decisions can be made at any time the decision maker chooses. In comparison to discrete-time Markov decision processes, continuous-time Markov decision processes can better model the decision-making process for a system that has continuous dynamics , i.e., the system dynamics is defined by ...

  9. Discrete phase-type distribution - Wikipedia

    en.wikipedia.org/wiki/Discrete_phase-type...

    A terminating Markov chain is a Markov chain where all states are transient, ... the discrete time distribution is a generalisation of the geometric distribution, for ...