enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. A Fistful of TOWs - Wikipedia

    en.wikipedia.org/wiki/A_Fistful_of_TOWs

    A Fistful of TOWs – TOW stands for "tube-launched, optically tracked, wire-guided missiles" [1] — is a set of rules designed for wargames with 6 mm miniatures at a scale of either 1" = 100 metres or 1 cm = 100 metres.

  3. Cooley–Tukey FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm

    The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size = in terms of N 1 smaller DFTs of sizes N 2, recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers).

  4. Butterfly diagram - Wikipedia

    en.wikipedia.org/wiki/Butterfly_diagram

    Signal-flow graph connecting the inputs x (left) to the outputs y that depend on them (right) for a "butterfly" step of a radix-2 Cooley–Tukey FFT. This diagram resembles a butterfly (as in the morpho butterfly shown for comparison), hence the name, although in some countries it is also called the hourglass diagram.

  5. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    The development of fast algorithms for DFT can be traced to Carl Friedrich Gauss's unpublished 1805 work on the orbits of asteroids Pallas and Juno.Gauss wanted to interpolate the orbits from sample observations; [6] [7] his method was very similar to the one that would be published in 1965 by James Cooley and John Tukey, who are generally credited for the invention of the modern generic FFT ...

  6. Filter bank - Wikipedia

    en.wikipedia.org/wiki/Filter_bank

    A special case occurs when, by design, the length of the blocks is an integer multiple of the interval between FFTs. Then the FFT filter bank can be described in terms of one or more polyphase filter structures where the phases are recombined by an FFT instead of a simple summation.

  7. Bailey's FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Bailey's_FFT_algorithm

    The Bailey's FFT (also known as a 4-step FFT) is a high-performance algorithm for computing the fast Fourier transform (FFT). This variation of the Cooley–Tukey FFT algorithm was originally designed for systems with hierarchical memory common in modern computers (and was the first FFT algorithm in this so called "out of core" class).

  8. Category:FFT algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:FFT_algorithms

    This category is for fast Fourier transform (FFT) algorithms, i.e. algorithms to compute the discrete Fourier transform (DFT) in O(N log N) time (or better, for approximate algorithms), where is the number of discrete points.

  9. Split-radix FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Split-radix_FFT_algorithm

    The split-radix FFT is a fast Fourier transform (FFT) algorithm for computing the discrete Fourier transform (DFT), and was first described in an initially little-appreciated paper by R. Yavne (1968) and subsequently rediscovered simultaneously by various authors in 1984.