Search results
Results from the WOW.Com Content Network
In statistical physics, the kinetic theory of gases applies Newton's laws of motion to large numbers (typically on the order of the Avogadro number) of particles. Kinetic theory can explain, for example, the pressure that a gas exerts upon the container holding it as the aggregate of many impacts of atoms, each imparting a tiny amount of momentum.
Relative velocities between two particles in classical mechanics. The figure shows two objects A and B moving at constant velocity. The equations of motion are: = +, = +, where the subscript i refers to the initial displacement (at time t equal to zero).
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Action principles are "integral" approaches rather than the "differential" approach of Newtonian mechanics.[2]: 162 The core ideas are based on energy, paths, an energy function called the Lagrangian along paths, and selection of a path according to the "action", a continuous sum or integral of the Lagrangian along the path.
Aristotelian physics is the form of natural philosophy described in the works of the Greek philosopher Aristotle (384–322 BC). In his work Physics, Aristotle intended to establish general principles of change that govern all natural bodies, both living and inanimate, celestial and terrestrial – including all motion (change with respect to place), quantitative change (change with respect to ...
In general, the term motion signifies a continuous change in the position or configuration of a physical system in space. For example, one can talk about the motion of a wave or the motion of a quantum particle, where the configuration consists of the probabilities of the wave or particle occupying specific positions.
of a point-like particle are combined into a four-dimensional bivector in terms of the 4-position X and the 4-momentum P of the particle: [8] [9] = where ∧ denotes the exterior product. This tensor is additive: the total angular momentum of a system is the sum of the angular momentum tensors for each constituent of the system.
The equation of motion for the particle derived above = + + can be rewritten using the definition of the Schwarzschild radius r s as = [] + + (+) which is equivalent to a particle moving in a one-dimensional effective potential = + (+) The first two terms are well-known classical energies, the first being the attractive Newtonian gravitational ...