Search results
Results from the WOW.Com Content Network
Sir Francis Beaufort. The scale that carries Beaufort's name had a long and complex evolution from the previous work of others (including Daniel Defoe the century before). In the 18th century, naval officers made regular weather observations, but there was no standard scale and so they could be very subjective — one man's "stiff breeze" might be another's "soft breeze"—: Beaufort succeeded ...
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
An anemometer is commonly used to measure wind speed. Global distribution of wind speed at 10m above ground averaged over the years 1981–2010 from the CHELSA-BIOCLIM+ data set [1] In meteorology, wind speed, or wind flow speed, is a fundamental atmospheric quantity caused by air moving from high to low pressure, usually due to changes in ...
Reference ranges (reference intervals) for blood tests are sets of values used by a health professional to interpret a set of medical test results from blood samples. Reference ranges for blood tests are studied within the field of clinical chemistry (also known as "clinical biochemistry", "chemical pathology" or "pure blood chemistry"), the ...
The NWS office in Tulsa, Oklahoma, in conjunction with Oral Roberts University's mathematics department, published an approximation formula to the WBGT that takes into account cloud cover and wind speed; in limited experimentation (four samples), the office claimed the estimate was regularly accurate to within 0.5 °F (0.28 °C), even with a ...
Speed; system unit code (alternative) symbol or abbrev. notes sample default conversion combinations SI: metre per second: m/s m/s US spelling: meter per second 1.0 m/s (3.3 ft/s)
The log wind profile is generally considered to be a more reliable estimator of mean wind speed than the wind profile power law in the lowest 10–20 m of the planetary boundary layer. Between 20 m and 100 m both methods can produce reasonable predictions of mean wind speed in neutral atmospheric conditions.
Balanced flow is often an accurate approximation of the actual flow, and is useful in improving the qualitative understanding and interpretation of atmospheric motion. In particular, the balanced-flow speeds can be used as estimates of the wind speed for particular arrangements of the atmospheric pressure on Earth's surface.