Search results
Results from the WOW.Com Content Network
The simplest is the slope-intercept form: = +, from which one can immediately see the slope a and the initial value () =, which is the y-intercept of the graph = (). Given a slope a and one known value () =, we write the point-slope form:
Power functions – relationships of the form = – appear as straight lines in a log–log graph, with the exponent corresponding to the slope, and the coefficient corresponding to the intercept. Thus these graphs are very useful for recognizing these relationships and estimating parameters .
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written
where is the slope and is the y-intercept. Because this is a function of only x {\displaystyle x} , it can't represent a vertical line. Therefore, it would be useful to make this equation written as a function of both x {\displaystyle x} and y {\displaystyle y} , to be able to draw lines at any angle.
The fit line is then the line y = mx + b with coefficients m and b in slope–intercept form. [12] As Sen observed, this choice of slope makes the Kendall tau rank correlation coefficient become approximately zero, when it is used to compare the values x i with their associated residuals y i − mx i − b. Intuitively, this suggests that how ...
In two dimensions, the equation for non-vertical lines is often given in the slope–intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line. x is the independent variable of the function y = f(x).
We can see that the slope (tangent of angle) of the regression line is the weighted average of (¯) (¯) that is the slope (tangent of angle) of the line that connects the i-th point to the average of all points, weighted by (¯) because the further the point is the more "important" it is, since small errors in its position will affect the ...