enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    The integer factorization problem is in NP and in co-NP (and even in UP and co-UP [23]). If the problem is NP-complete, the polynomial time hierarchy will collapse to its first level (i.e., NP = co-NP). The most efficient known algorithm for integer factorization is the general number field sieve, which takes expected time

  3. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The requirement that the factors be prime is necessary: factorizations containing composite numbers may not be unique (for example, = =). This theorem is one of the main reasons why 1 is not considered a prime number : if 1 were prime, then factorization into primes would not be unique; for example, 2 = 2 ⋅ 1 = 2 ⋅ 1 ⋅ 1 ...

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number.

  5. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  6. Landau's problems - Wikipedia

    en.wikipedia.org/wiki/Landau's_problems

    Henryk Iwaniec showed that there are infinitely many numbers of the form + with at most two prime factors. [ 26 ] [ 27 ] Ankeny [ 28 ] and Kubilius [ 29 ] proved that, assuming the extended Riemann hypothesis for L -functions on Hecke characters , there are infinitely many primes of the form p = x 2 + y 2 {\displaystyle p=x^{2}+y^{2}} with y ...

  7. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    The difficulty of computing φ(n) without knowing the factorization of n is thus the difficulty of computing d: this is known as the RSA problem which can be solved by factoring n. The owner of the private key knows the factorization, since an RSA private key is constructed by choosing n as the product of two (randomly chosen) large primes p and q.

  8. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of 5 ...

  9. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    The two first subsections, are proofs of the generalized version of Euclid's lemma, namely that: if n divides ab and is coprime with a then it divides b. The original Euclid's lemma follows immediately, since, if n is prime then it divides a or does not divide a in which case it is coprime with a so per the generalized version it divides b.