enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    The consistency of ZFC does follow from the existence of a weakly inaccessible cardinal, which is unprovable in ZFC if ZFC is consistent. Nevertheless, it is deemed unlikely that ZFC harbors an unsuspected contradiction; it is widely believed that if ZFC were inconsistent, that fact would have been uncovered by now.

  3. Multiverse (set theory) - Wikipedia

    en.wikipedia.org/wiki/Multiverse_(set_theory)

    The collection of countable transitive models of ZFC (in some universe) is called the hyperverse and is very similar to the "multiverse". A typical difference between the universe and multiverse views is the attitude to the continuum hypothesis. In the universe view the continuum hypothesis is a meaningful question that is either true or false ...

  4. Continuum hypothesis - Wikipedia

    en.wikipedia.org/wiki/Continuum_hypothesis

    Joel David Hamkins proposes a multiverse approach to set theory and argues that "the continuum hypothesis is settled on the multiverse view by our extensive knowledge about how it behaves in the multiverse, and, as a result, it can no longer be settled in the manner formerly hoped for". [23]

  5. Von Neumann universe - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_universe

    An initial segment of the von Neumann universe. Ordinal multiplication is reversed from our usual convention; see Ordinal arithmetic.. The cumulative hierarchy is a collection of sets V α indexed by the class of ordinal numbers; in particular, V α is the set of all sets having ranks less than α.

  6. Zermelo set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo_set_theory

    The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set.

  7. Gödel's incompleteness theorems - Wikipedia

    en.wikipedia.org/wiki/Gödel's_incompleteness...

    The logical statement x=y => y=x is encoded as 120-061-121-032-061-062-032-121-061-120 in ASCII, which can be converted into the number 120061121032061062032121061120. In principle, proving a statement true or false can be shown to be equivalent to proving that the number matching the statement does or does not have a given property.

  8. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.

  9. Joel David Hamkins - Wikipedia

    en.wikipedia.org/wiki/Joel_David_Hamkins

    Joel David Hamkins is an American mathematician and philosopher who is the John Cardinal O'Hara Professor of Logic at the University of Notre Dame. [1] He has made contributions in mathematical and philosophical logic, set theory and philosophy of set theory (particularly the idea of the set-theoretic multiverse), in computability theory, and in group theory.