Search results
Results from the WOW.Com Content Network
NP-complete special cases include the edge dominating set problem, i.e., the dominating set problem in line graphs. NP-complete variants include the connected dominating set problem and the maximum leaf spanning tree problem. [3]: ND2 Feedback vertex set [2] [3]: GT7 Feedback arc set [2] [3]: GT8 Graph coloring [2] [3]: GT4
The problem may be solved by sorting the list and then checking if there are any consecutive equal elements; it may also be solved in linear expected time by a randomized algorithm that inserts each item into a hash table and compares only those elements that are placed in the same hash table cell. [1]
An upper bound for a decision-tree model was given by Meyer auf der Heide [17] who showed that for every n there exists an O(n 4)-deep linear decision tree that solves the subset-sum problem with n items. Note that this does not imply any upper bound for an algorithm that should solve the problem for any given n.
That is, the time required to solve the problem using any currently known algorithm increases rapidly as the size of the problem grows. As a consequence, determining whether it is possible to solve these problems quickly, called the P versus NP problem, is one of the fundamental unsolved problems in computer science today.
The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for simple concepts. [34] [35] Consequently, practical decision-tree learning algorithms are based on heuristics such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot ...
Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.
Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.