enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    U-Net was created by Olaf Ronneberger, Philipp Fischer, Thomas Brox in 2015 and reported in the paper "U-Net: Convolutional Networks for Biomedical Image Segmentation". [1] It is an improvement and development of FCN: Evan Shelhamer, Jonathan Long, Trevor Darrell (2014). "Fully convolutional networks for semantic segmentation". [2]

  3. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...

  4. Segmentation-based object categorization - Wikipedia

    en.wikipedia.org/wiki/Segmentation-based_object...

    Given an image D containing an instance of a known object category, e.g. cows, the OBJ CUT algorithm computes a segmentation of the object, that is, it infers a set of labels m. Let m be a set of binary labels, and let Θ {\displaystyle \Theta } be a shape parameter( Θ {\displaystyle \Theta } is a shape prior on the labels from a layered ...

  5. Random walker algorithm - Wikipedia

    en.wikipedia.org/wiki/Random_walker_algorithm

    The random walker algorithm is an algorithm for image segmentation. In the first description of the algorithm, [1] a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each ...

  6. Spectral clustering - Wikipedia

    en.wikipedia.org/wiki/Spectral_clustering

    A popular normalized spectral clustering technique is the normalized cuts algorithm or Shi–Malik algorithm introduced by Jianbo Shi and Jitendra Malik, [2] commonly used for image segmentation. It partitions points into two sets ( B 1 , B 2 ) {\displaystyle (B_{1},B_{2})} based on the eigenvector v {\displaystyle v} corresponding to the ...

  7. Minimum spanning tree-based segmentation - Wikipedia

    en.wikipedia.org/wiki/Minimum_spanning_tree...

    In 2017, Saglam and Baykan used Prim's sequential representation of minimum spanning tree and proposed a new cutting criterion for image segmentation. [7] They construct the MST with Prim's MST algorithm using the Fibonacci Heap data structure. The method achieves an important success on the test images in fast execution time.

  8. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    Given an input image, R-CNN begins by applying selective search to extract regions of interest (ROI), where each ROI is a rectangle that may represent the boundary of an object in image. Depending on the scenario, there may be as many as two thousand ROIs. After that, each ROI is fed through a neural network to produce output features.

  9. Alan Yuille - Wikipedia

    en.wikipedia.org/wiki/Alan_Yuille

    2017 with LC Chen, G Papandreou, I Kokkinos, K Murphy, Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, in: IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 40, nº 4; 834-848.