enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    U-Net was created by Olaf Ronneberger, Philipp Fischer, Thomas Brox in 2015 and reported in the paper "U-Net: Convolutional Networks for Biomedical Image Segmentation". [1] It is an improvement and development of FCN: Evan Shelhamer, Jonathan Long, Trevor Darrell (2014). "Fully convolutional networks for semantic segmentation". [2]

  3. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...

  4. Random walker algorithm - Wikipedia

    en.wikipedia.org/wiki/Random_walker_algorithm

    The random walker algorithm is an algorithm for image segmentation. In the first description of the algorithm, [1] a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each ...

  5. Spectral clustering - Wikipedia

    en.wikipedia.org/wiki/Spectral_clustering

    A popular normalized spectral clustering technique is the normalized cuts algorithm or Shi–Malik algorithm introduced by Jianbo Shi and Jitendra Malik, [2] commonly used for image segmentation. It partitions points into two sets ( B 1 , B 2 ) {\displaystyle (B_{1},B_{2})} based on the eigenvector v {\displaystyle v} corresponding to the ...

  6. Minimum spanning tree-based segmentation - Wikipedia

    en.wikipedia.org/wiki/Minimum_spanning_tree...

    Image segmentation strives to partition a digital image into regions of pixels with similar properties, e.g. homogeneity. [1] The higher-level region representation simplifies image analysis tasks such as counting objects or detecting changes, because region attributes (e.g. average intensity or shape [2]) can be compared more readily than raw pixels.

  7. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    This is achieved by prompting the text encoder with class names and selecting the class whose embedding is closest to the image embedding. For example, to classify an image, they compared the embedding of the image with the embedding of the text "A photo of a {class}.", and the {class} that results in the highest dot product is outputted.

  8. Semantic analysis (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Semantic_analysis_(machine...

    In machine learning, semantic analysis of a text corpus is the task of building structures that approximate concepts from a large set of documents. It generally does not involve prior semantic understanding of the documents. Semantic analysis strategies include: Metalanguages based on first-order logic, which can analyze the speech of humans.

  9. Otsu's method - Wikipedia

    en.wikipedia.org/wiki/Otsu's_method

    An example image thresholded using Otsu's algorithm Original image. In computer vision and image processing, Otsu's method, named after Nobuyuki Otsu (大津展之, Ōtsu Nobuyuki), is used to perform automatic image thresholding. [1]