Search results
Results from the WOW.Com Content Network
A classic example of recursion is computing the factorial, which is defined recursively by 0! := 1 and n! := n × (n - 1)!. To recursively compute its result on a given input, a recursive function calls (a copy of) itself with a different ("smaller" in some way) input and uses the result of this call to construct its result.
where a represents the number of recursive calls at each level of recursion, b represents by what factor smaller the input is for the next level of recursion (i.e. the number of pieces you divide the problem into), and f(n) represents the work that the function does independently of any recursion (e.g. partitioning, recombining) at each level ...
In the recursive calls to the algorithm, the prime number theorem can again be invoked to prove that the numbers of bits in the corresponding products decrease by a constant factor at each level of recursion, so the total time for these steps at all levels of recursion adds in a geometric series to ().
This recursion is a primitive recursion because it computes the next value (n+1)! of the function based on the value of n and the previous value n! of the function. On the other hand, the function Fib( n ), which returns the n th Fibonacci number , is defined with the recursion equations
A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...
For example, addition and division, the factorial and exponential function, and the function which returns the nth prime are all primitive recursive. [1] In fact, for showing that a computable function is primitive recursive, it suffices to show that its time complexity is bounded above by a primitive recursive function of the input size. [ 2 ]
This example is mutual single recursion, and could easily be replaced by iteration. In this example, the mutually recursive calls are tail calls, and tail call optimization would be necessary to execute in constant stack space. In C, this would take O(n) stack space, unless rewritten to use jumps instead of calls. [4]
For example, in the Java virtual machine (JVM), tail-recursive calls can be eliminated (as this reuses the existing call stack), but general tail calls cannot be (as this changes the call stack). [13] [14] As a result, functional languages such as Scala that target the JVM can efficiently implement direct tail recursion, but not mutual tail ...