Search results
Results from the WOW.Com Content Network
A term with no indeterminates and a polynomial with no indeterminates are called, respectively, a constant term and a constant polynomial. [b] The degree of a constant term and of a nonzero constant polynomial is 0. The degree of the zero polynomial 0 (which has no terms at all) is generally treated as not defined (but see below).
A constant coefficient, also known as constant term or simply constant, is a quantity either implicitly attached to the zeroth power of a variable or not attached to other variables in an expression; for example, the constant coefficients of the expressions above are the number 3 and the parameter c, involved in 3=c ⋅ x 0.
In particular, the constant term will always be the lowest degree term of the polynomial. This also applies to multivariate polynomials. For example, the polynomial + + + has a constant term of −4, which can be considered to be the coefficient of , where the variables are eliminated by being exponentiated to 0 (any non-zero number ...
Every polynomial in one variable x with real coefficients can be uniquely written as the product of a constant, polynomials of the form x + a with a real, and polynomials of the form x 2 + ax + b with a and b real and a 2 − 4b < 0 (which is the same thing as saying that the polynomial x 2 + ax + b has no real roots).
The term of "variable" comes from the terminology of polynomial functions. However, here, X has no value (other than itself), and cannot vary, being a constant in the polynomial ring.) Two polynomials are equal when the corresponding coefficients of each X k are equal.
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...
In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule ), but the method can be generalized to division by any polynomial .
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.