Search results
Results from the WOW.Com Content Network
Monatomic gas heat capacities per atom (not per molecule) are decreased by a factor of 2 with regard to solids, due to loss of half of the potential degrees of freedom per atom for storing energy in a monatomic gas, as compared with regard to an ideal solid. There is some difference in the heat capacity of monatomic vs. polyatomic gasses, and ...
The Mayer relation states that the specific heat capacity of a gas at constant volume is slightly less than at constant pressure. This relation was built on the reasoning that energy must be supplied to raise the temperature of the gas and for the gas to do work in a volume changing case.
This is a derivation to obtain an expression for for an ideal gas. An ideal gas has the equation of state: = where P = pressure V = volume n = number of moles R = universal gas constant T = temperature. The ideal gas equation of state can be arranged to give:
The energy required to compress a gas to a certain volume may be determined by multiplying the difference between the gas pressure and the external pressure by the change in volume. A pressure gradient describes the potential to perform work on the surroundings by converting internal energy to work until equilibrium is reached.
It is also sometimes called gravimetric energy density, which is not to be confused with energy density, which is defined as energy per unit volume. It is used to quantify, for example, stored heat and other thermodynamic properties of substances such as specific internal energy , specific enthalpy , specific Gibbs free energy , and specific ...
However, in a process without a constant volume, the heat addition affects both the internal energy and the work (i.e., the enthalpy); thus the temperature changes by a different amount than in the constant-volume case and a different heat capacity value is required.
For heat flow, the heat equation follows from the physical laws of conduction of heat and conservation of energy (Cannon 1984). By Fourier's law for an isotropic medium, the rate of flow of heat energy per unit area through a surface is proportional to the negative temperature gradient across it: =
To achieve the same increase in temperature, more heat energy is needed for a gram of that substance than for a gram of a monatomic gas. Thus, the specific heat capacity per mole of a polyatomic gas depends both on the molecular mass and the number of degrees of freedom of the molecules. [25] [26] [27]