Search results
Results from the WOW.Com Content Network
Diagram showing the development of different blood cells from haematopoietic stem cell to mature cells. Haematopoiesis (/ h ɪ ˌ m æ t ə p ɔɪ ˈ iː s ɪ s, ˌ h iː m ə t oʊ-, ˌ h ɛ m ə-/; [1] [2] from Ancient Greek αἷμα (haîma) 'blood' and ποιεῖν (poieîn) 'to make'; also hematopoiesis in American English, sometimes h(a)emopoiesis) is the formation of blood cellular ...
When bone marrow develops, it eventually assumes the task of forming most of the blood cells for the entire organism. [3] However, maturation, activation, and some proliferation of lymphoid cells occurs in the spleen, thymus, and lymph nodes. In children, haematopoiesis occurs in the marrow of the long bones such as the femur and tibia.
Hematopoietic stem cells (HSCs) are the stem cells [1] that give rise to other blood cells.This process is called haematopoiesis. [2] In vertebrates, the first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within the (midgestational) aorta-gonad-mesonephros region, through a process known as endothelial-to-hematopoietic transition.
Bone marrow is a center of a variety of immune activities: i) hematopoiesis, ii) osteogenesis, iii) immune responses, iv) distinction between self and non-self antigens, v) central immune regulatory function, vi) storage of memory cells, vii) immune surveillance of the central nervous system, viii) adaptation to energy crisis, ix) provision of ...
These acquired changes occur in somatic cells, or cells in the body that are not egg and sperm cells, ... “Clonal hematopoiesis occurs when a cell called a hematopoietic stem cell, which can ...
In adults, the majority of hematopoiesis occurs in the bone marrow. Significant production in any other organ is usually the result of a pathological process. When red blood cell (RBC) numbers are low, the body induces a homeostatic mechanism aimed to increase the synthesis of RBCs, typically via the production of erythropoietin. If the loss of ...
Many human blood cells, such as red blood cells (RBCs), immune cells, and even platelets all originate from the same progenitor cell, the hematopoietic stem cell (HSC). [1] As these cells are short-lived, there needs to be a steady turnover of new blood cells and the maintenance of an HSC pool. This is broadly termed hematopoiesis. [2]
In hematopoiesis, myeloid cells, or myelogenous cells are blood cells that arise from a progenitor cell for granulocytes, monocytes, erythrocytes, or platelets [1] [2] (the common myeloid progenitor, that is, CMP or CFU-GEMM), or in a narrower sense also often used, specifically from the lineage of the myeloblast (the myelocytes, monocytes, and ...