Search results
Results from the WOW.Com Content Network
Slice semantics potentially differ per object; new semantics can be introduced when operator overloading the indexing operator. With Python standard lists (which are dynamic arrays), every slice is a copy. Slices of NumPy arrays, by contrast, are views onto the same underlying buffer.
first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first) step – the number of array elements in each (default 1)
Python has array index and array slicing expressions in lists, denoted as a[key], a [start: stop] or a [start: stop: step]. Indexes are zero-based, and negative indexes are relative to the end. Slices take elements from the start index up to, but not including, the stop index.
The possible slicings depend on the implementation details: for example, Fortran allows slicing off one column of a matrix variable, but not a row, and treat it as a vector; whereas C allow slicing off a row from a matrix, but not a column. On the other hand, other slicing operations are possible when array types are implemented in other ways.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
The slice is defined for a slicing criterion C=(x,v) where x is a statement in program P and v is variable in x. A static slice includes all the statements that can affect the value of variable v at statement x for any possible input. Static slices are computed by backtracking dependencies between statements.
The indexing expression for a 1-based index would then be a ′ + s × i . {\displaystyle a'+s\times i.} Hence, the efficiency benefit at run time of zero-based indexing is not inherent, but is an artifact of the decision to represent an array with the address of its first element rather than the address of the fictitious zeroth element.
The JS++ programming language is able to analyze if an array index or map key is out-of-bounds at compile time using existent types, which is a nominal type describing whether the index or key is within-bounds or out-of-bounds and guides code generation. Existent types have been shown to add only 1ms overhead to compile times.