Search results
Results from the WOW.Com Content Network
To convert between the rectangular and polar forms of a complex number, the conversion formulae given above can be used. Equivalent are the cis and angle notations : z = r c i s φ = r ∠ φ . {\displaystyle z=r\operatorname {\mathrm {cis} } \varphi =r\angle \varphi .}
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
Alternatively, the conversion can be considered as two sequential rectangular to polar conversions: the first in the Cartesian xy plane from (x, y) to (R, φ), where R is the projection of r onto the xy-plane, and the second in the Cartesian zR-plane from (z, R) to (r, θ).
Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems. In geodesy, geographic coordinate conversion is defined as translation among different coordinate formats or map projections all referenced to the same geodetic datum. [1]
Vectors are defined in cylindrical coordinates by (ρ, φ, z), where . ρ is the length of the vector projected onto the xy-plane,; φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π),
The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by φ ∈ [ 0 , 2 π ] {\displaystyle \varphi \in [0,2\pi ]} : it is the angle between the x -axis and the projection of the radial vector onto the xy -plane.
The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to the origin of a Cartesian system) is called the pole, and the ray from the pole in the reference direction is the polar axis.
Two-center bipolar coordinates. In mathematics, two-center bipolar coordinates is a coordinate system based on two coordinates which give distances from two fixed centers and . [1]