enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    The complex number z can be represented in rectangular form as = + where i is the imaginary unit, or can alternatively be written in polar form as = (⁡ + ⁡) and from there, by Euler's formula, [14] as = = ⁡. where e is Euler's number, and φ, expressed in radians, is the principal value of the complex number function arg applied to x + iy ...

  3. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range of 180°, running from 0° to 180°, and does not pose any problem when calculated from an arccosine, but beware for an arctangent.

  4. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).

  5. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    The length of the curve is given by the formula = | ′ | where | ′ | is the Euclidean norm of the tangent vector ′ to the curve. To justify this formula, define the arc length as limit of the sum of linear segment lengths for a regular partition of [ a , b ] {\displaystyle [a,b]} as the number of segments approaches infinity.

  6. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Vectors are defined in cylindrical coordinates by (ρ, φ, z), where . ρ is the length of the vector projected onto the xy-plane,; φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π),

  7. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by φ ∈ [ 0 , 2 π ] {\displaystyle \varphi \in [0,2\pi ]} : it is the angle between the x -axis and the projection of the radial vector onto the xy -plane.

  8. Lemniscate of Bernoulli - Wikipedia

    en.wikipedia.org/wiki/Lemniscate_of_Bernoulli

    A lemniscate of Bernoulli and its two foci F 1 and F 2 The lemniscate of Bernoulli is the pedal curve of a rectangular hyperbola Sinusoidal spirals (r n = –1 n cos(nθ), θ = π/2) in polar coordinates and their equivalents in rectangular coordinates:

  9. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    In polar form, if and are real numbers then the conjugate of is . This can be shown using Euler's formula . The product of a complex number and its conjugate is a real number: a 2 + b 2 {\displaystyle a^{2}+b^{2}} (or r 2 {\displaystyle r^{2}} in polar coordinates ).