Search results
Results from the WOW.Com Content Network
There are several formulas for a binomial confidence interval, but all of them rely on the assumption of a binomial distribution. In general, a binomial distribution applies when an experiment is repeated a fixed number of times, each trial of the experiment has two possible outcomes (success and failure), the probability of success is the same ...
Therefore, the Poisson distribution with parameter λ = np can be used as an approximation to B(n, p) of the binomial distribution if n is sufficiently large and p is sufficiently small. According to rules of thumb, this approximation is good if n ≥ 20 and p ≤ 0.05 [ 36 ] such that np ≤ 1 , or if n > 50 and p < 0.1 such that np < 5 , [ 37 ...
The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr( X = 0) = 0.05 and hence (1− p ) n = .05 so n ln (1– p ) = ln .05 ≈ −2.996.
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...
The binomial test is useful to test hypotheses about the probability of success: : = where is a user-defined value between 0 and 1.. If in a sample of size there are successes, while we expect , the formula of the binomial distribution gives the probability of finding this value:
The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution. The multivariate t-distribution, a generalization of the Student's t-distribution. The negative multinomial distribution, a generalization of the negative binomial distribution.
A binomial distribution with parameters n = 1 and p is a Bernoulli distribution with parameter p. A negative binomial distribution with parameters n = 1 and p is a geometric distribution with parameter p. A gamma distribution with shape parameter α = 1 and rate parameter β is an exponential distribution with rate parameter β.
When the observations are independent, this estimator has a (scaled) binomial distribution (and is also the sample mean of data from a Bernoulli distribution). The maximum variance of this distribution is 0.25, which occurs when the true parameter is p = 0.5.