enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homotopy - Wikipedia

    en.wikipedia.org/wiki/Homotopy

    Given two topological spaces X and Y, a homotopy equivalence between X and Y is a pair of continuous maps f : X → Y and g : Y → X, such that g ∘ f is homotopic to the identity map id X and f ∘ g is homotopic to id Y. If such a pair exists, then X and Y are said to be homotopy equivalent, or of the same homotopy type.

  3. Timeline of category theory and related mathematics - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_category...

    Homotopical algebraic geometry: The main idea is to extend schemes by formally replacing the rings with any kind of "homotopy-ring-like object". More precisely this object is a commutative monoid in a symmetric monoidal category endowed with a notion of equivalences which are understood as "up-to-homotopy monoid" (e.g. E ∞-rings). 2002: Peter ...

  4. Timeline of manifolds - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_manifolds

    The Thom isomorphism brings cobordism of manifolds into the ambit of homotopy theory. 1952: Edwin E. Moise: Moise's theorem established that a 3-dimension compact connected topological manifold is a PL manifold (earlier terminology "combinatorial manifold"), having a unique PL structure. In particular it is triangulable. [37]

  5. Homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Homotopy_theory

    In general, every manifold has the homotopy type of a CW complex; [3] in fact, Morse theory implies that a compact manifold has the homotopy type of a finite CW complex. [citation needed] Remarkably, Whitehead's theorem says that for CW complexes, a weak homotopy equivalence and a homotopy equivalence are the same thing.

  6. Timelike homotopy - Wikipedia

    en.wikipedia.org/wiki/Timelike_homotopy

    A timelike homotopy between two timelike curves is a homotopy such that each intermediate curve is timelike. No closed timelike curve (CTC) on a Lorentzian manifold is timelike homotopic to a point (that is, null timelike homotopic); such a manifold is therefore said to be multiply connected by timelike curves (or timelike multiply connected ).

  7. Homotopy category - Wikipedia

    en.wikipedia.org/wiki/Homotopy_category

    The older definition of the homotopy category hTop, called the naive homotopy category [1] for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps f : X → Y are considered the same in the naive homotopy category if one can be continuously deformed to the other.

  8. Regular homotopy - Wikipedia

    en.wikipedia.org/wiki/Regular_homotopy

    Any two knots in 3-space are equivalent by regular homotopy, though not by isotopy. This curve has total curvature 6π, and turning number 3.. The Whitney–Graustein theorem classifies the regular homotopy classes of a circle into the plane; two immersions are regularly homotopic if and only if they have the same turning number – equivalently, total curvature; equivalently, if and only if ...

  9. Homotopy group - Wikipedia

    en.wikipedia.org/wiki/Homotopy_group

    In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, ...