enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Two-dimensional flow - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_flow

    As the fluid flows outward, the area of flow increases. As a result, to satisfy continuity equation, the velocity decreases and the streamlines spread out. The velocity at all points at a given distance from the source is the same. Fig 2 - Streamlines and potential lines for source flow. The velocity of fluid flow can be given as -

  3. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    Other equations in physics, such as Gauss's law of the electric field and Gauss's law for gravity, have a similar mathematical form to the continuity equation, but are not usually referred to by the term "continuity equation", because j in those cases does not represent the flow of a real physical quantity.

  4. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    Therefore, the continuity equation for an incompressible fluid reduces further to: = This relationship, =, identifies that the divergence of the flow velocity vector is equal to zero (), which means that for an incompressible fluid the flow velocity field is a solenoidal vector field or a divergence-free vector field.

  5. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    In the analysis of a flow, it is often desirable to reduce the number of equations and/or the number of variables. The incompressible Navier–Stokes equation with mass continuity (four equations in four unknowns) can be reduced to a single equation with a single dependent variable in 2D, or one vector equation in 3D.

  6. Stream function - Wikipedia

    en.wikipedia.org/wiki/Stream_function

    The velocity satisfies the continuity equation for incompressible flow: ∇ ⋅ u = 0. {\displaystyle \quad \nabla \cdot \mathbf {u} =0.} Although in principle the stream function doesn't require the use of a particular coordinate system, for convenience the description presented here uses a right-handed Cartesian coordinate system with ...

  7. Reynolds-averaged Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Reynolds-averaged_Navier...

    The Reynolds-averaged Navier–Stokes equations (RANS equations) are time-averaged [a] equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition , whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds . [ 1 ]

  8. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    The flow is axisymmetric ( ⁠ ∂... / ∂θ ⁠ = 0). The flow is fully developed ( ⁠ ∂u x / ∂x ⁠ = 0). Here however, this can be proved via mass conservation, and the above assumptions. Then the angular equation in the momentum equations and the continuity equation are identically satisfied.

  9. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The second equation is the incompressible constraint, stating the flow velocity is a solenoidal field (the order of the equations is not causal, but underlines the fact that the incompressible constraint is not a degenerate form of the continuity equation, but rather of the energy equation, as it will become clear in the following).