enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  3. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)

  4. Spring (device) - Wikipedia

    en.wikipedia.org/wiki/Spring_(device)

    The rate or spring constant of a spring is the change in the force it exerts, divided by the change in deflection of the spring. That is, it is the gradient of the force versus deflection curve . An extension or compression spring's rate is expressed in units of force divided by distance, for example or N/m or lbf/in.

  5. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    However, if the mass is displaced from the equilibrium position, the spring exerts a restoring elastic force that obeys Hooke's law. Mathematically, F = − k x , {\displaystyle \mathbf {F} =-k\mathbf {x} ,} where F is the restoring elastic force exerted by the spring (in SI units: N ), k is the spring constant ( N ·m −1 ), and x is the ...

  6. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    When a spring is stretched or compressed by a mass, the spring develops a restoring force. Hooke's law gives the relationship of the force exerted by the spring when the spring is compressed or stretched a certain length: F ( t ) = − k x ( t ) , {\displaystyle F(t)=-kx(t),} where F is the force, k is the spring constant, and x is the ...

  7. Flexibility method - Wikipedia

    en.wikipedia.org/wiki/Flexibility_method

    For example, consider a spring that has Q and q as, respectively, its force and deformation: The spring stiffness relation is Q = k q where k is the spring stiffness. Its flexibility relation is q = f Q, where f is the spring flexibility. Hence, f = 1/k. A typical member flexibility relation has the following general form:

  8. Rotational–vibrational coupling - Wikipedia

    en.wikipedia.org/wiki/Rotational–vibrational...

    As the gas expands, its high pressure exerts a force on both the projectile and the interior of the barrel. It is through the action of that force that potential energy is converted to kinetic energy of both projectile and barrel. In the case of rotational-vibrational coupling, the causal agent is the force exerted by the spring.

  9. Spring system - Wikipedia

    en.wikipedia.org/wiki/Spring_system

    A spring system can be thought of as the simplest case of the finite element method for solving problems in statics. Assuming linear springs and small deformation (or restricting to one-dimensional motion) a spring system can be cast as a (possibly overdetermined) system of linear equations or equivalently as an energy minimization problem.