Search results
Results from the WOW.Com Content Network
DNA nanotechnology, specifically, is an example of bottom-up molecular self-assembly, in which molecular components spontaneously organize into stable structures; the particular form of these structures is induced by the physical and chemical properties of the components selected by the designers. [19]
DNA computing requires that the self-assembly of the oligonucleotide strands happen in such a way that hybridization should occur in a manner compatible with the goals of computation. The field of DNA computing was established in Leonard M. Adelman's seminal paper. [1] His work is significant for a number of reasons:
Nucleic acid design is used in DNA nanotechnology to design strands which will self-assemble into a desired target structure. These include examples such as DNA machines, periodic two- and three-dimensional lattices, polyhedra, and DNA origami. [2]
Molecular self-assembly is a key concept in supramolecular chemistry. [6] [7] [8] This is because assembly of molecules in such systems is directed through non-covalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-stacking interactions, and/or electrostatic) as well as electromagnetic interactions.
DNA nanotechnology has been applied to the related field of DNA computing. DNA tiles can be designed to contain multiple sticky ends with sequences chosen so that they act as Wang tiles . A DX array has been demonstrated whose assembly encodes an XOR operation; this allows the DNA array to implement a cellular automaton which generates a ...
Molecular models are useful in the design of structures for DNA nanotechnology. Here, individual DNA tiles (model at left) self-assemble into a highly ordered DNA 2D-nanogrid (AFM image at right). There are various uses of DNA molecular modeling in Genomics and Biotechnology research applications, from DNA repair to PCR and DNA nanostructures ...
For example, DNA nanotechnology or cellular engineering would be classified as bionanotechnology because they involve working with biomolecules on the nanoscale. Conversely, many new medical technologies involving nanoparticles as delivery systems or as sensors would be examples of nanobiotechnology since they involve using nanotechnology to ...
Realizing that the approach might allow DNA sequencing, Deamer and his team spent a decade refining the concept. In 1999 they published the first paper using the term 'nanopore sequencing' and two years later produced an image capturing a DNA hairpin passing through a nanopore in real time.