enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Convex and concave kites. A kite is a quadrilateral with reflection symmetry across one of its diagonals. Equivalently, it is a quadrilateral whose four sides can be grouped into two pairs of adjacent equal-length sides. [1] [7] A kite can be constructed from the centers and crossing points of any two intersecting circles. [8]

  3. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A Watt quadrilateral is a quadrilateral with a pair of opposite sides of equal length. [6] A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8]

  4. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    Tessellation in two dimensions, also called planar tiling, is a topic in geometry that studies how shapes, known as tiles, can be arranged to fill a plane without any gaps, according to a given set of rules. These rules can be varied.

  5. Voronoi diagram - Wikipedia

    en.wikipedia.org/wiki/Voronoi_diagram

    Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .

  6. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    The kite is a quadrilateral whose four interior angles are 72, 72, 72, and 144 degrees. The kite may be bisected along its axis of symmetry to form a pair of acute Robinson triangles (with angles of 36, 72 and 72 degrees). The dart is a non-convex quadrilateral whose four interior angles are 36, 72, 36, and 216 degrees. The dart may be bisected ...

  7. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    In spherical geometry, regular spherical polyhedra (tilings of the sphere) exist that would otherwise be degenerate as polytopes. These are the hosohedra {2,n} and their dual dihedra {n,2}. Coxeter calls these cases "improper" tessellations. [10] The first few cases (n from 2 to 6) are listed below.

  8. Polygon triangulation - Wikipedia

    en.wikipedia.org/wiki/Polygon_triangulation

    In computational geometry, polygon triangulation is the partition of a polygonal area (simple polygon) P into a set of triangles, [1] i.e., finding a set of triangles with pairwise non-intersecting interiors whose union is P. Triangulations may be viewed as special cases of planar straight-line graphs.

  9. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    Therefore, the second problem is that this nomenclature is not unique for each tessellation. In order to solve those problems, GomJau-Hogg’s notation [ 3 ] is a slightly modified version of the research and notation presented in 2012, [ 2 ] about the generation and nomenclature of tessellations and double-layer grids.