enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    The product-to-sum identities [28] or prosthaphaeresis formulae can be proven by expanding their right-hand sides using the angle addition theorems. Historically, the first four of these were known as Werner's formulas, after Johannes Werner who used them for astronomical calculations. [29]

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Illustration of the sum formula. Draw a horizontal line (the x -axis); mark an origin O. Draw a line from O at an angle α {\displaystyle \alpha } above the horizontal line and a second line at an angle β {\displaystyle \beta } above that; the angle between the second line and the x -axis is α + β {\displaystyle \alpha +\beta } .

  4. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The sum and difference formulas allow expanding the sine, the cosine, and the tangent of a sum or a difference of two angles in terms of sines and cosines and tangents of the angles themselves. These can be derived geometrically, using arguments that date to Ptolemy. One can also produce them algebraically using Euler's formula. Sum

  5. Prosthaphaeresis - Wikipedia

    en.wikipedia.org/wiki/Prosthaphaeresis

    Sum and difference: Find the sum and difference of the two angles. Average the cosines : Find the cosines of the sum and difference angles using a cosine table and average them, giving (according to the second formula above) the product cos ⁡ α cos ⁡ β {\displaystyle \cos \alpha \cos \beta } .

  6. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    Similar right triangles illustrating the tangent and secant trigonometric functions Trigonometric functions and their reciprocals on the unit circle. The Pythagorean theorem applied to the blue triangle shows the identity 1 + cot 2 θ = csc 2 θ, and applied to the red triangle shows that 1 + tan 2 θ = sec 2 θ.

  7. Talk:Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Talk:Proofs_of...

    The proof of the angle sum identities by Euler's formula is not valid because it creates circular dependency. All 3 proofs of Euler's formula (power series, calculus, differential equations) rely on the derivatives of the trigonometric functions, which in turn rely on the angle sum identities to simplify sin(x+h) and cos(x+h).

  8. Lemniscate elliptic functions - Wikipedia

    en.wikipedia.org/wiki/Lemniscate_elliptic_functions

    The Machin formula for π is = ⁡ ⁡, and several similar formulas for π can be developed using trigonometric angle sum identities, e.g. Euler's formula = ⁡ + ⁡. Analogous formulas can be developed for ϖ , including the following found by Gauss: 1 2 ϖ = 2 arcsl ⁡ 1 2 + arcsl ⁡ 7 23 . {\displaystyle {\tfrac {1}{2}}\varpi =2 ...

  9. Sum and difference formula (trigonometry) - Wikipedia

    en.wikipedia.org/?title=Sum_and_difference...

    List of trigonometric identities#Angle sum and difference identities To a section : This is a redirect from a topic that does not have its own page to a section of a page on the subject. For redirects to embedded anchors on a page, use {{ R to anchor }} instead .