enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity.Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.

  3. Spacetime algebra - Wikipedia

    en.wikipedia.org/wiki/Spacetime_algebra

    In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl 1,3 (R), or equivalently the geometric algebra G(M 4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and ...

  4. Spacetime - Wikipedia

    en.wikipedia.org/wiki/Spacetime

    The fundamental reason for merging space and time into spacetime is that space and time are separately not invariant, which is to say that, under the proper conditions, different observers will disagree on the length of time between two events (because of time dilation) or the distance between the two events (because of length contraction).

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...

  6. Charts on SO (3) - Wikipedia

    en.wikipedia.org/wiki/Charts_on_SO(3)

    If we use a skew-symmetric matrix, every 3 × 3 skew-symmetric matrix is determined by 3 parameters, and so at first glance, the parameter space is R 3. Exponentiating such a matrix results in an orthogonal 3 × 3 matrix of determinant 1 – in other words, a rotation matrix, but this is a many-to-one map.

  7. Orbital state vectors - Wikipedia

    en.wikipedia.org/wiki/Orbital_state_vectors

    Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.

  8. Euclidean distance matrix - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance_matrix

    In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.

  9. Fractional coordinates - Wikipedia

    en.wikipedia.org/wiki/Fractional_coordinates

    A crystal structure is defined as the spatial distribution of the atoms within a crystal, usually modeled by the idea of an infinite crystal pattern.An infinite crystal pattern refers to the infinite 3D periodic array which corresponds to a crystal, in which the lengths of the periodicities of the array may not be made arbitrarily small.