Search results
Results from the WOW.Com Content Network
A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity.Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.
While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.
Spectral graph theory relates properties of a graph to a spectrum, i.e., eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix. Imbalanced weights may undesirably affect the matrix spectrum, leading to the need of normalization — a column/row scaling of the matrix entries ...
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
Thus Dirichlet forms are natural generalizations of the Dirichlet integrals = (,), where () is a positive symmetric matrix. The Euler-Lagrange equation of a Dirichlet form is a non-local analogue of an elliptic equations in divergence form.
In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...
In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid.For the case of a finite-dimensional graph (having a finite number of edges and vertices), the discrete Laplace operator is more commonly called the Laplacian matrix.
In 4D space, the Hopf angles {ξ 1, η, ξ 2} parameterize the 3-sphere. For fixed η they describe a torus parameterized by ξ 1 and ξ 2, with η = π / 4 being the special case of the Clifford torus in the xy - and uz-planes. These tori are not the usual tori found in 3D-space. While they are still 2D surfaces, they are embedded in ...