enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  3. Effective method - Wikipedia

    en.wikipedia.org/wiki/Effective_method

    In logic, mathematics and computer science, especially metalogic and computability theory, an effective method [1] or effective procedure is a procedure for solving a problem by any intuitively 'effective' means from a specific class. [2] An effective method is sometimes also called a mechanical method or procedure. [3]

  4. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    A finite difference is a mathematical expression of the form f (x + b) − f (x + a).If a finite difference is divided by b − a, one gets a difference quotient.The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.

  5. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.

  6. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Because of this, different methods need to be used to solve BVPs. For example, the shooting method (and its variants) or global methods like finite differences, [3] Galerkin methods, [4] or collocation methods are appropriate for that class of problems. The Picard–Lindelöf theorem states that there is a unique solution, provided f is ...

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [17] This is the case, for example, if f(x) = x 3 − 2x + 2.

  8. Your Cholesterol Could Be A Key Indicator Of Dementia. A ...

    www.aol.com/lifestyle/cholesterol-could-key...

    Typically, dementia is associated with classic symptoms like confusion and memory loss. But new research finds that there could be a less obvious risk factor out there: your cholesterol levels ...

  9. Hill climbing - Wikipedia

    en.wikipedia.org/wiki/Hill_climbing

    Hill climbing attempts to maximize (or minimize) a target function (), where is a vector of continuous and/or discrete values. At each iteration, hill climbing will adjust a single element in and determine whether the change improves the value of ().