Search results
Results from the WOW.Com Content Network
In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1] The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler ...
In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a ...
Thus for an incompressible inviscid fluid the specific internal energy is constant along the flow lines, also in a time-dependent flow. The pressure in an incompressible flow acts like a Lagrange multiplier , being the multiplier of the incompressible constraint in the energy equation, and consequently in incompressible flows it has no ...
In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity , i.e., for an inviscid fluid and with no vorticity present in the flow.
A fluid element that is initially irrotational remains irrotational. Helmholtz's theorems apply to inviscid flows. In observations of vortices in real fluids the strength of the vortices always decays gradually due to the dissipative effect of viscous forces. Alternative expressions of the three theorems are as follows:
D'Alembert proved that – for incompressible and inviscid potential flow – the drag force is zero on a body moving with constant velocity relative to the fluid. [2] Zero drag is in direct contradiction to the observation of substantial drag on bodies moving relative to fluids, such as air and water; especially at high velocities ...
The lift predicted by the Kutta-Joukowski theorem within the framework of inviscid potential flow theory is quite accurate, even for real viscous flow, provided the flow is steady and unseparated. [7] In deriving the Kutta–Joukowski theorem, the assumption of irrotational flow was used.
And then using the continuity equation =, the scalar potential can be substituted back in to find Laplace's Equation for irrotational flow: ∇ 2 ϕ = 0 {\displaystyle \nabla ^{2}\phi =0\,} Note that the Laplace equation is a well-studied linear partial differential equation.