Search results
Results from the WOW.Com Content Network
DNA helicases are frequently attracted to regions of DNA damage and are essential for cellular DNA replication, recombination, repair, and transcription. Chemical manipulation of their molecular processes can change the rate at which cancer cells divide, as well as, the efficiency of transactions and cellular homeostasis.
In the replication factory model, after both DNA helicases for leading strands and lagging strands are loaded on the template DNAs, the helicases run along the DNAs into each other. The helicases remain associated for the remainder of replication process.
DNA helicases are responsible for unwinding the double-stranded DNA during chromosome replication. Helicases in eukaryotic cells are remarkably complex. [ 106 ] The catalytic core of the helicase is composed of six minichromosome maintenance (Mcm2-7) proteins, forming a hexameric ring.
The MCM complex is the DNA helicase that opens the helix at the replication origin and unwinds the two strands as the replication forks travel along the DNA. [5] Elevated CDK activity at the end of G1 triggers the firing of the origins and the dismantling of the pre-RCs.
The replication of bacteriophage T4 DNA upon infection of E. coli is a well-studied DNA replication system. During the period of exponential DNA increase at 37°C, the rate of elongation is 749 nucleotides per second. [11] The mutation rate during replication is 1.7 mutations per 10 8 base pairs. [12]
MCM2-7 is required for both DNA replication initiation and elongation; its regulation at each stage is a central feature of eukaryotic DNA replication. [3] During G1 phase, the two head-to-head Mcm2-7 rings serve as the scaffold for the assembly of the bidirectional replication initiation complexes at the replication origin.
Stalled replication forks often lead to DNA breakage, further implicating the importance of unimpaired replication forks on genome integrity. [6] RRM3 helps cells progress through stalled replication forks, although this is a mechanism that is still poorly understood. [6] Rrm3p is one of many helicase proteins in Saccharomyces cerevisiae. Rrm3p ...
Helicase, POLQ-like, also known as Helicase Q (HELQ), HEL308 and Holliday junction migration protein, encoded by the gene HELQ1, is a DNA helicase found in humans, archea and many other organisms. [5] HelQ is a replication-linked repair helicase that preserves DNA integrity through helping in the repair of DNA that has become damaged. [6]