enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Properties of water - Wikipedia

    en.wikipedia.org/wiki/Properties_of_water

    Water molecules stay close to each other , due to the collective action of hydrogen bonds between water molecules. These hydrogen bonds are constantly breaking, with new bonds being formed with different water molecules; but at any given time in a sample of liquid water, a large portion of the molecules are held together by such bonds. [61]

  3. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    These effects usually combine to give heat capacities lower than 3R per mole of atoms in the solid, although in molecular solids, heat capacities calculated per mole of molecules in molecular solids may be more than 3R. For example, the heat capacity of water ice at the melting point is about 4.6R per mole of molecules, but only 1.5R per mole ...

  4. Molar heat capacity - Wikipedia

    en.wikipedia.org/wiki/Molar_heat_capacity

    A closely related property of a substance is the heat capacity per mole of atoms, or atom-molar heat capacity, in which the heat capacity of the sample is divided by the number of moles of atoms instead of moles of molecules. So, for example, the atom-molar heat capacity of water is 1/3 of its molar heat capacity, namely 25.3 J⋅K −1 ⋅mol ...

  5. Water - Wikipedia

    en.wikipedia.org/wiki/Water

    Water is an inorganic compound with the chemical formula H 2 O. It is a transparent, tasteless, odorless, [c] and nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a solvent [20]).

  6. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...

  7. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the ...

  8. Molecular diffusion - Wikipedia

    en.wikipedia.org/wiki/Molecular_diffusion

    The self-diffusion coefficient of neat water is: 2.299·10 −9 m 2 ·s −1 at 25 °C and 1.261·10 −9 m 2 ·s −1 at 4 °C. [2] Chemical diffusion occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation.

  9. Standard enthalpy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_enthalpy_of_formation

    The heat of reaction is then minus the sum of the standard enthalpies of formation of the reactants (each being multiplied by its respective stoichiometric coefficient, ν) plus the sum of the standard enthalpies of formation of the products (each also multiplied by its respective stoichiometric coefficient), as shown in the equation below: [4]