Search results
Results from the WOW.Com Content Network
For example, a mass flow rate of 1,000 kg/h of air at 1 atmosphere of absolute pressure is 455 SCFM when defined at 32 °F (0 °C) but 481 SCFM when defined at 60 °F (16 °C). Due to the variability of the definition and the consequences of ambiguity, it is best engineering practice to state what standard conditions are used when communicating ...
Meteorological data includes wind speeds which may be expressed as statute miles per hour, knots, or meters per second. Here are the conversion factors for those various expressions of wind speed: 1 m/s = 2.237 statute mile/h = 1.944 knots 1 knot = 1.151 statute mile/h = 0.514 m/s 1 statute mile/h = 0.869 knots = 0.447 m/s. Note:
With this conversion from SCCM to kg/s, one can then use available unit calculators to convert kg/s to other units, [5] such as g/s of the CGS system, or slug/s. Based on the above formulas, the relationship between SCCM and molar flow rate in kmol/s is given by
At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m 3. At 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft 3. The following table illustrates the air density–temperature relationship at 1 atm or 101.325 kPa: [citation needed]
= 1000 kg/m 3: ounce (avoirdupois) per cubic foot oz/ft 3: ≡ oz/ft 3: ≈ 1.001 153 961 kg/m 3: ounce (avoirdupois) per cubic inch oz/in 3: ≡ oz/in 3: ≈ 1.729 994 044 × 10 3 kg/m 3: ounce (avoirdupois) per gallon (imperial) oz/gal ≡ oz/gal ≈ 6.236 023 291 kg/m 3: ounce (avoirdupois) per gallon (US fluid) oz/gal ≡ oz/gal ≈ 7.489 ...
Actual cubic feet per minute (ACFM) is a unit of volumetric flow. It is commonly used by manufacturers of blowers and compressors. [1] This is the actual gas delivery with reference to inlet conditions, whereas cubic foot per minute (CFM) is an unqualified term and should only be used in general and never accepted as a specific definition without explanation.
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass m through a surface per unit time t. The overdot on the m is Newton's notation for a time derivative . Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.
The standard liter per minute (SLM or SLPM) is a unit of (molar or) mass flow rate of a gas at standard conditions for temperature and pressure (STP), which is most commonly practiced in the United States, whereas European practice revolves around the normal litre per minute (NLPM). [1]