Search results
Results from the WOW.Com Content Network
A series of stochastic generators was reported by Jean-Loup Faulon. The software, MOLSIG, [24] was integrated into this stochastic generator for canonical labelling and duplicate checks. [25] As for many other generators, the tree approach is the skeleton of Jean-Loup Faulon's structure generators.
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.
GraphBLAS (/ ˈ ɡ r æ f ˌ b l ɑː z / ⓘ) is an API specification that defines standard building blocks for graph algorithms in the language of linear algebra. [1] [2] GraphBLAS is built upon the notion that a sparse matrix can be used to represent graphs as either an adjacency matrix or an incidence matrix.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
More generally, a generalized adjacency matrix is any symmetric matrix of real numbers with the same pattern of nonzeros off the diagonal (the diagonal elements may be any real numbers). The minimum rank of G {\displaystyle G} is defined as the smallest rank of any generalized adjacency matrix of the graph; it is denoted by mr ( G ...
NodeXL Basic is free, NodeXL Pro is a paid subscription NodeXL is a (social) network analysis and visualization Add-in for Microsoft Excel written in C#. It integrates into Excel 2010, 2013, 2016, 2019, 2021, 365 and adds undirected and directed graphs as a chart type to the spreadsheet and calculates a core set of network metrics and scores.
Adjacency lists are generally preferred for the representation of sparse graphs, while an adjacency matrix is preferred if the graph is dense; that is, the number of edges | | is close to the number of vertices squared, | |, or if one must be able to quickly look up if there is an edge connecting two vertices.
When G is d-regular, meaning each vertex is of degree d, there is a relationship between the isoperimetric constant h(G) and the gap d − λ 2 in the spectrum of the adjacency operator of G. By standard spectral graph theory, the trivial eigenvalue of the adjacency operator of a d-regular graph is λ 1 = d and the first non-trivial eigenvalue ...