Search results
Results from the WOW.Com Content Network
The only metal having an ionisation energy higher than some nonmetals (sulfur and selenium) is mercury. [citation needed] Mercury and its compounds have a reputation for toxicity but on a scale of 1 to 10, dimethylmercury ((CH 3) 2 Hg) (abbr. DMM), a volatile colourless liquid, has been described as a 15. It is so dangerous that scientists have ...
In 1802 the term "metalloids" was introduced for elements with the physical properties of metals but the chemical properties of non-metals. [194] However, in 1811, the Swedish chemist Berzelius used the term "metalloids" [195] to describe all nonmetallic elements, noting their ability to form negatively charged ions with oxygen in aqueous ...
The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows ("periods") and columns ("groups"). It is an icon of chemistry and is widely used in physics and other sciences.
Hydrogen is again placed by itself on account of its uniqueness. The remaining nonmetals are divided into metalloids, nonmetals, (referred to as "quintessential nonmetals"), halogens, and noble gases. Since the metalloids abut the post-transition or "poor" metals, they might be renamed as "poor non-metals". [11]
Nonmetals show more variability in their properties than do metals. [1] Metalloids are included here since they behave predominately as chemically weak nonmetals.. Physically, they nearly all exist as diatomic or monatomic gases, or polyatomic solids having more substantial (open-packed) forms and relatively small atomic radii, unlike metals, which are nearly all solid and close-packed, and ...
This line has been called the amphoteric line, [2] the metal-nonmetal line, [3] the metalloid line, [4] [5] the semimetal line, [6] or the staircase. [2] [n 1] While it has also been called the Zintl border [8] or the Zintl line [9] [10] these terms instead refer to a vertical line sometimes drawn between groups 13 and 14.
The division into blocks is justified by their distinctive nature: s is characterized, except in H and He, by highly electropositive metals; p by a range of very distinctive metals and non-metals, many of them essential to life; d by metals with multiple oxidation states; f by metals so similar that their separation is problematic.
Metals can be categorised by their composition, physical or chemical properties. Categories described in the subsections below include ferrous and non-ferrous metals; brittle metals and refractory metals; white metals; heavy and light metals; base, noble, and precious metals as well as both metallic ceramics and polymers.