Search results
Results from the WOW.Com Content Network
The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).
Shapiro–Wilk test: interval: univariate: 1: Normality test: sample size between 3 and 5000 [16] Kolmogorov–Smirnov test: interval: 1: Normality test: distribution parameters known [16] Shapiro-Francia test: interval: univariate: 1: Normality test: Simpliplification of Shapiro–Wilk test Lilliefors test: interval: 1: Normality test
Kolmogorov–Smirnov test: this test only works if the mean and the variance of the normal distribution are assumed known under the null hypothesis, Lilliefors test: based on the Kolmogorov–Smirnov test, adjusted for when also estimating the mean and variance from the data, Shapiro–Wilk test, and; Pearson's chi-squared test.
Kolmogorov–Smirnov test; Cramér–von Mises criterion; Anderson–Darling test; Berk-Jones tests [1] [2] Shapiro–Wilk test; Chi-squared test; Akaike information criterion; Hosmer–Lemeshow test; Kuiper's test; Kernelized Stein discrepancy [3] [4] Zhang's Z K, Z C and Z A tests [5] Moran test; Density Based Empirical Likelihood Ratio tests [6]
The Shapiro–Francia test is a statistical test for the normality of a population, based on sample data. It was introduced by S. S. Shapiro and R. S. Francia in 1972 as a simplification of the Shapiro–Wilk test .
Samuel Sanford Shapiro (July 13, 1930 – November 5, 2023) was an American statistician and engineer. He was a professor emeritus of statistics at Florida International University . He was known for his co-authorship of the Shapiro–Wilk test and the Shapiro–Francia test .
“For example, ‘I hope your test went well. I know you studied hard for that,’ or ‘What a beautiful day today. I hope you had fun at recess.’” ...
A normal quantile plot for a simulated set of test statistics that have been standardized to be Z-scores under the null hypothesis. The departure of the upper tail of the distribution from the expected trend along the diagonal is due to the presence of substantially more large test statistic values than would be expected if all null hypotheses were true.