Search results
Results from the WOW.Com Content Network
In computer science, a list or sequence is a collection of items that are finite in number and in a particular order. An instance of a list is a computer representation of the mathematical concept of a tuple or finite sequence. A list may contain the same value more than once, and each occurrence is considered a distinct item.
Product type (also called a tuple), a record in which the fields are not named; String, a sequence of characters representing text; Union, a datum which may be one of a set of types; Tagged union (also called a variant, discriminated union or sum type), a union with a tag specifying which type the data is
C++ programmers expect the latter on every major implementation of C++; it includes aggregate types (vectors, lists, maps, sets, queues, stacks, arrays, tuples), algorithms (find, for_each, binary_search, random_shuffle, etc.), input/output facilities (iostream, for reading from and writing to the console and files), filesystem library ...
An n-tuple is a tuple of n elements, where n is a non-negative integer. There is only one 0-tuple, called the empty tuple. A 1-tuple and a 2-tuple are commonly called a singleton and an ordered pair, respectively. The term "infinite tuple" is occasionally used for "infinite sequences".
Tuples are collections composed of heterogeneous objects of pre-arranged dimensions. A tuple can be considered a generalization of a struct's member variables. The C++11 version of the TR1 tuple type benefited from C++11 features like variadic templates. To implement reasonably, the TR1 version required an implementation-defined maximum number ...
In computer science, a set is an abstract data type that can store unique values, without any particular order. It is a computer implementation of the mathematical concept of a finite set. Unlike most other collection types, rather than retrieving a specific element from a set, one typically tests a value for membership in a set.
get(set(A,I, V), J) = get(A, J) if I ≠ J for any array state A , any value V , and any tuples I , J for which the operations are defined. The first axiom means that each element behaves like a variable.
A multiset may be formally defined as an ordered pair (A, m) where A is the underlying set of the multiset, formed from its distinct elements, and : + is a function from A to the set of positive integers, giving the multiplicity – that is, the number of occurrences – of the element a in the multiset as the number m(a).