Search results
Results from the WOW.Com Content Network
Inferential statistics cannot separate variability due to treatment from variability due to experimental units when there is only one measurement per unit. Sacrificial pseudoreplication (Figure 5b in Hurlbert 1984) occurs when means within a treatment are used in an analysis, and these means are tested over the within unit variance.
Replication in statistics evaluates the consistency of experiment results across different trials to ensure external validity, while repetition measures precision and internal consistency within the same or similar experiments. [5] Replicates Example: Testing a new drug's effect on blood pressure in separate groups on different days.
Let a be the value of our statistic as calculated from the full sample; let a i (i = 1,...,n) be the corresponding statistics calculated for the half-samples. (n is the number of half-samples.) Then our estimate for the sampling variance of the statistic is the average of (a i − a) 2. This is (at least in the ideal case) an unbiased estimate ...
Repeated measures design is a research design that involves multiple measures of the same variable taken on the same or matched subjects either under different conditions or over two or more time periods. [1]
Pseudoreplication is defined as the use of inferential statistics to test for treatment effects with data from experiments where either treatments are not replicated (though samples may be) or replicates are not statistically independent.
This article needs attention from an expert in statistics. The specific problem is: completion to reasonable standard for probability distributions. WikiProject Statistics may be able to help recruit an expert.
In probability theory, the rule of succession is a formula introduced in the 18th century by Pierre-Simon Laplace in the course of treating the sunrise problem. [1] The formula is still used, particularly to estimate underlying probabilities when there are few observations or events that have not been observed to occur at all in (finite) sample data.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...