Search results
Results from the WOW.Com Content Network
To determine if a number is a power of two, conceptually we may repeatedly do integer divide by two until the number won't divide by 2 evenly; if the only factor left is 1, the original number was a power of 2. Using bit and logical operators, there is a simple expression which will return true (1) or false (0):
In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits.It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor.
A prime number that is one less than a power of two is called a Mersenne prime. For example, the prime number 31 is a Mersenne prime because it is 1 less than 32 (2 5). Similarly, a prime number (like 257) that is one more than a positive power of two is called a Fermat prime—the exponent itself is a power of
In the C programming language, operations can be performed on a bit level using bitwise operators. Bitwise operations are contrasted by byte-level operations which characterize the bitwise operators' logical counterparts, the AND, OR, NOT operators. Instead of performing on individual bits, byte-level operators perform on strings of eight bits ...
Arithmetic values thought to have been represented by parts of the Eye of Horus. The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions (not related to the binary number system) and Horus-Eye fractions (so called because many historians of mathematics believe that the symbols used for this system could be arranged to form the eye of Horus, although this ...
A prefix sum of this type may be performed efficiently using the bitwise Boolean operations available on modern computers, by computing the exclusive or of x with each of the numbers formed by shifting x to the left by a number of bits that is a power of two. [25] Parallel prefix (using multiplication as the underlying associative operation ...
It is frequently stated that arithmetic right shifts are equivalent to division by a (positive, integral) power of the radix (e.g., a division by a power of 2 for binary numbers), and hence that division by a power of the radix can be optimized by implementing it as an arithmetic right shift. (A shifter is much simpler than a divider.
The function 2 ⌈log 2 (x)⌉ (round up to the nearest power of two) using shifts and bitwise ORs [40] is not efficient to compute as in this 32-bit example and even more inefficient if we have a 64-bit or 128-bit operand: