Search results
Results from the WOW.Com Content Network
In computational complexity theory, the set splitting problem is the following decision problem: given a family F of subsets of a finite set S, decide whether there exists a partition of S into two subsets S 1, S 2 such that all elements of F are split by this partition, i.e., none of the elements of F is completely in S 1 or S 2.
An example of a maximum cut. In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible.
Therefore, the remaining 3-sets can be partitioned into two groups: n 3-sets containing the items u ij, and n 3-sets containing the items u ij '. In each matching pair of 3-sets, the sum of the two pairing items u ij +u ij ' is 44T+4, so the sum of the four regular items is 84T+4. Therefore, from the four regular items, we construct a 4-set in ...
Since every set is contained in its closure, two separated sets automatically must be disjoint. The closures themselves do not have to be disjoint from each other; for example, the intervals [ 0 , 1 ) {\displaystyle [0,1)} and ( 1 , 2 ] {\displaystyle (1,2]} are separated in the real line R , {\displaystyle \mathbb {R} ,} even though the point ...
A cut C = (S, T) is a partition of V of a graph G = (V, E) into two subsets S and T. The cut-set of a cut C = (S, T) is the set {(u, v) ∈ E | u ∈ S, v ∈ T} of edges that have one endpoint in S and the other endpoint in T. If s and t are specified vertices of the graph G, then an s – t cut is a cut in which s belongs to the set S and t ...
In today's puzzle, there are six theme words to find (including the spangram). Hint: The first one can be found in the top-half of the board. Here are the first two letters for each word: FO. FE ...
"Can a ball be decomposed into a finite number of point sets and reassembled into two balls identical to the original?" The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be put back together in a different ...
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.