Search results
Results from the WOW.Com Content Network
Electronegativity is not a uniquely defined property and may depend on the definition. The suggested values are all taken from WebElements as a consistent set. Many of the highly radioactive elements have values that must be predictions or extrapolations, but are unfortunately not marked as such.
Silicon is a chemical element; it has symbol Si and atomic number 14. ... For example, the electronegativity of silicon (1.90) is much less than that of carbon ...
A silicon–oxygen bond (Si−O bond) is a chemical bond between silicon and oxygen atoms that can be found in many inorganic and organic compounds. [1] In a silicon–oxygen bond, electrons are shared unequally between the two atoms, with oxygen taking the larger share due to its greater electronegativity.
Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. [1] An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the ...
Silicon has a moderate ionisation energy (786.5 kJ/mol), moderate electron affinity (134 kJ/mol), and moderate electronegativity (1.9). It is a poor oxidising agent (Si + 4e → Si 4 = –0.147 at pH 0). As a metalloid the chemistry of silicon is largely covalent in nature, noting it can form alloys with metals such as iron and copper.
The continued presence of second-row type stability in certain organosilicon compounds is known as the silicon α and β effects, after the corresponding locants. These stabilities occur because of a partial overlap between the C–Si σ orbital and the σ* antibonding orbital at the β position, lowering the S N reaction transition state 's ...
A network covalent solid consists of atoms held together by a network of covalent bonds (pairs of electrons shared between atoms of similar electronegativity), and hence can be regarded as a single, large molecule. The classic example is diamond; other examples include silicon, [3] quartz and graphite.
Pauling calculated the charge build up on the silicon atom due to the difference in electronegativity to be +2. The electroneutrality principle led Pauling to the conclusion that charge transfer from O to Si must occur using d orbitals forming a π-bond and he calculated that this π-bonding accounted for the shortening of the Si-O bond.