enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  3. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    An ellipse can be defined as the locus of points for which the sum of the distances to two given foci is constant. A circle is the special case of an ellipse in which the two foci coincide with each other. Thus, a circle can be more simply defined as the locus of points each of which is a fixed distance from a single given focus.

  4. Focal conics - Wikipedia

    en.wikipedia.org/wiki/Focal_conics

    A,C: vertices of the ellipse and foci of the hyperbola E,F: foci of the ellipse and vertices of the hyperbola Focal conics: two parabolas A: vertex of the red parabola and focus of the blue parabola F: focus of the red parabola and vertex of the blue parabola. In geometry, focal conics are a pair of curves consisting of [1] [2] either

  5. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    The lower part of the diagram shows that F 1 and F 2 are the foci of the ellipse in the xy-plane, too. Hence, it is confocal to the given ellipse and the length of the string is l = 2r x + (a − c). Solving for r x yields r x = ⁠ 1 / 2 ⁠ (l − a + c); furthermore r 2 y = r 2 x − c 2.

  6. n-ellipse - Wikipedia

    en.wikipedia.org/wiki/N-ellipse

    In geometry, the n-ellipse is a generalization of the ellipse allowing more than two foci. [1] n-ellipses go by numerous other names, including multifocal ellipse, [2] polyellipse, [3] egglipse, [4] k-ellipse, [5] and Tschirnhaus'sche Eikurve (after Ehrenfried Walther von Tschirnhaus). They were first investigated by James Clerk Maxwell in 1846 ...

  7. Translation of axes - Wikipedia

    en.wikipedia.org/wiki/Translation_of_axes

    Given the equation + + =, by using a translation of axes, determine whether the locus of the equation is a parabola, ellipse, or hyperbola. Determine foci (or focus), vertices (or vertex), and eccentricity. Solution: To complete the square in x and y, write the equation in the form

  8. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    The eccentricity of an ellipse is strictly less than 1. When circles (which have eccentricity 0) are counted as ellipses, the eccentricity of an ellipse is greater than or equal to 0; if circles are given a special category and are excluded from the category of ellipses, then the eccentricity of an ellipse is strictly greater than 0.

  9. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    In an ellipse, the semi-major axis is the geometric mean of the distance from the center to either focus and the distance from the center to either directrix. The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is ...